Chapter (6) Logarithmic and Exponential functions

0606/12/F/M/19

1. It is given that $log_4 x = p$. Giving your answer in its simplest form, find, in terms of *p*, a. $log_4(16x)$

[2]

b.
$$log_4(\frac{x^7}{256})$$

[2]

Using your answers to parts (i) and (ii),

c. solve $log_4(16x) - log_4(\frac{x^7}{256}) = 5$, giving your answer correct to 2 decimal places.

[3]

0606/12/F/M/19

- 2. The function p is defined by $p(x) = 3e^{x} + 2$ for all real x.
 - a. State the range of p.
 - b. On the axes below, sketch and label the graphs of y = p(x) and $y = p^{-1}(x)$. State the coordinates of any points of intersection with the coordinate axes.

c. Hence explain why the equation $p^{-1}(x) = p(x)$ has no solutions.

[1]

[3]

[1]

The Maths Society

<u>0606/11/M/J/19</u>

3. (a) Solve
$$\log_3 x + \log_9 x = 12$$
.

[3]

(b) Solve
$$log_4(3y^2 - 10) = 2log_4(y - 1) + \frac{1}{2}$$
.

[5]

- 4. It is given that $f(x) = 5e^x 1$ for $x \in \mathbb{R}$
 - a. Write down the range of f.

[1]

b. Find f^{-1} and state its domain.

[3]

0606/13/M/J/19

5. $f(x) = e^{3x}$ for $x \in \mathbb{R}$

$$g(x) = 2x^2 + 1$$
 for $x \ge 0$

a. Write down the range of g.

[1]

b. Show that $f^{-1}g(\sqrt{62}) = ln 5$.

[3]

0606/22/M/J/19

6. Solve
$$lg(x^2 - 3) = 0$$
.

[2]

0606/11/O/N/19

- 7. $f(x) = 3e^{2x} + 1 \text{ for } x \in \mathbb{R}$
 - g(x) = x + 1 for $x \in \mathbb{R}$
 - (a) Write down the range of f and of g.

(b) Evaluate $fg^2(0)$.

[2]

[2]

(c) On the axes below, sketch and label the graphs of y = f(x) and $y = f^{-1}(x)$. State the coordinates of any points of intersection with the coordinate axes.

[3]

The Maths Society

0606/12/O/N/19

8. Solve $\log_7 x + 2\log_x 7 = 3$.

[4]

0606/13/O/N/19

9. (a) Given that $log_a x = p$ and $log_a y = q$, find in terms of p and q.

(i) $log_a axy^2$

[2]

(ii) $log_a(\frac{x^3}{ay})$

[2]

(iii) $log_a x + log_y a$.

[1]

The Maths Society

(b) Using the substitution $m = 3^x$, or otherwise, solve $3^x - 3^{1+2x} + 4 = 0$

[3]